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Exact normal forces and trajectories
for a rotating tripod sliding on a
smooth surface

Mark R.A. Shegelski, Glen L. Goodvin, Rebecca Booth, Peter
Bagnall, and Matthew Reid

Abstract: We study the motion of a rotating tripod sliding over a smooth surface. The tripod
is important and unique in that it is the only case where all aspects of the motion can be
solved exactly. From the three constraint equations, we calculate the three normal forces and
friction forces, which we then use to calculate the trajectory and other physical quantities
of interest. We report novel results: the normal force has an interesting form when the
sliding speed and the speed of rotation are almost equal; the tripod can execute serpentine
trajectories; trajectories can have large lateral deflections; the translational kinetic energy
can decrease and increase during a full rotation; the tripod can tip at a very late stage of its
motion. The tripod trajectories are compared to trajectories of rotating, sliding cylinders that
have continuous contact rings. We discuss significant implications of our results.

PACS No.: 45.40.–f

Résumé : Nous étudions le mouvement d’un tripode en rotation et glissant sur une surface
lisse. Le cas du tripode est important, parce que c’est le seul cas où tous les aspects du
mouvement peuvent être résolus exactement. À partir des trois équations de contrainte,
nous calculons les trois forces normales et les forces de friction, qui sont ensuite utilisées
pour déterminer la trajectoire et évaluer les quantités d’intérêt physique. Nous présentons
de nouveaux résultats : la force normale prend une forme intéressante lorsque la vitesse de
rotation et celle de glissement sont presque égales ; le tripode peut exécuter des trajectoires
serpentines ; les trajectoires peuvent présenter des déplacements latéraux importants ; l’énergie
cinétique de translation peut diminuer et augmenter sur un cycle de rotation ; le tripode peut
se renverser vers la toute fin de son mouvement. Nous comparons les trajectoires des tripodes
avec celles de cylindres glissant en tournant et dont les lieux de contact sont des cercles
continus. Nous analysons les implications de nos résultats.
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1. Introduction

In this paper, we investigate the motion of a sliding, rotating tripod. This is a unique case in that it
is the only sliding, rotating object for which all aspects of the motion can be calculated exactly, with no
approximations. To accurately predict the motion of a sliding object, the contact geometry and pressure
distribution are critical parameters that require either an experimental evaluation or a solid theoretical
prediction [1,2]. Indeed, the real contact area of a sliding object is one of the main concerns in the friction
of unlubricated solids [3]. In the present study, the trajectory and associated normal force distribution
for a tripod are examined analytically, without the need to assume any pressure distribution. Further,
it is shown that the motion of a continuous contact ring can be approximated, under certain physical
conditions, by that of a tripod. This has implications regarding the calculation of trajectories for more
complicated sliding contact rings, such as curling rocks [4–16].

We calculate the exact normal forces on the three legs of the tripod and derive the equations of
motion for the tripod with only basic assumptions. The possible trajectories we report have novel
features. For example, in the rapid rotation regime, we find “looping” trajectories where the tripod is
found to curve through large angles. The extreme case yields nearly circular loops. We show that the
tripod can follow serpentine paths; for example, the tripod can curl to the right and then back to the
left during its motion. Such serpentine paths show oscillations in the lateral direction of motion and
can even end with a sudden reversal in lateral direction. We find that the translational kinetic energy of
the tripod can oscillate: increasing and decreasing over a full rotation, while still being monotonically
decreasing over any full cycle of rotation. When the translational speed of the center of mass (CM)
and the speed of rotation of the contact points are almost equal the normal force of the tripod has an
interesting structure (see Fig. 3). The tripod can also rotate and slide with stability until a time near the
end of its motion, at which point the motion becomes unstable and the tripod tips.

We compare the tripod trajectories to trajectories of rotating, sliding cylinders that have continuous
contact rings. We find that these trajectories can be almost the same for the extremes of “slow” rotation
and “rapid” rotation, which supports results reported in previous works. Moreover, when the translational
speed and rotational speed are almost the same, we find that the trajectories of the tripod and a cylinder
having a continuous contact ring are, in general, almost the same.

We also discuss significant implications of our results, including: normal forces and motions of
cylinders with more than three contact points; comparison of the exact normal force for the tripod with
the normal force around a continuous contact ring; the motion of a flat, smooth sheet of material sliding
over a number of identical spheres.

We find no material in the literature about the motion of a rotating, sliding tripod. There are, however,
a number of papers that study the motion of sliding, rotating cylinders and disks that have smooth contact
patterns [4–16].

2. Equations of motion

We study the motion of a tripod with total mass M uniformly distributed in a circular cylinder of
height H and radius R. The tripod rotates and slides on a smooth surface, and has three legs that make
contact with the surface. For convenience, we take the contact points to be 120◦ apart and located on
a circle of radius r whose center is directly beneath the CM. The cylindrical symmetry simplifies the
calculations while retaining important physical features. The CM is at a height h above the surface and
located on the axis of symmetry of the circular cylinder, which also passes through the center of the
circle of radius r . We take the coefficient of friction to have a constant value µ.

The force exerted on each leg is the sum of the normal force Ni and the force of friction Fi , where
i = 1, 2, 3 for the three legs. The only assumptions we make are that the magnitude Fi of Fi is µNi
and that the direction of Fi is opposite to the instantaneous direction of motion ui of the contact point
of leg i relative to the surface.
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Fig. 1. Overhead view of the initial configuration of the tripod. The y-axis is in the direction of the initial
velocity v0 of the CM of the tripod and the tripod is set spinning counter-clockwise with initial angular
velocity ω0. The initial angle between the positive x-axis and the first leg of the tripod is θ0. The tripod has
a total mass M uniformly distributed in a circular cylinder of height H and radius R. The contact points are
120◦ apart and located on a circle of radius r whose center is located directly beneath the CM of the tripod.

We define an inertial frame as follows: the y-axis is in the direction of the initial velocity v0 of
the CM of the tripod, the x-axis is perpendicular to the y-axis, and the z-axis is normal to and away
from the surface. We also define a sequence of instantaneous inertial frames with unit vectors êv and
êT such that êv is in the direction of the instantaneous velocity v(t) of the CM, êT is transverse to êv ,
with êT × êv = êz, where êz is a unit vector in the positive z direction. Note that the origins of the
instantaneous inertial frames are located on the surface and directly beneath the instantaneous positions
of the CM.

The initial angle between the positive x-axis and the first leg of the tripod, θ0, specifies the initial
locations of the tripod’s legs, and is in the range 0 ≤ θ0 < 2π/3. At later times, the angle θ1 of the first
leg is measured from the positive êT axis to the first leg of the tripod in the instantaneous inertial frame.
The tripod is given an initial velocity v0 and set spinning counter-clockwise with initial angular speed
ω0. The magnitudes of the instantaneous velocity and angular velocity are given by v andω, respectively.
An overhead view of the initial configuration of the tripod is given in Fig. 1 and an overhead view of
the tripod in the instantaneous inertial frame including the forces and torques on one of the tripod legs
is given in Fig. 2.

For smooth motion, we require that the tripod legs always remain in full contact with the surface.
Any net force in the vertical direction would cause the tripod to accelerate away from the surface and
any net torque in the plane would cause the tripod to tip. This implies that the forces on the legs of
the tripod are such that the net force in the z direction is zero and that the net torques in the êT and êv
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Fig. 2. Forces and torques in the instantaneous inertial frame acting on one of the contact points of the
tripod. The physical quantities are as follows: v is the velocity of the CM of the tripod; vrot is the rotational
velocity of the contact point; u = v + vrot is the instantaneous velocity of the contact point relative to the
underlying smooth surface. The friction Ff is in the direction opposite to u and has magnitude µN where
µ is the coefficient due to friction and N is the normal force acting on the contact point. The friction
gives rise to a torque that has a component τf in the êv − êT plane, as shown; τN denotes the torque due
to the normal force. The tail of the vector r is at the center of the circle on which the contact points lie.
The contact point is located at the tip of the vector r . The angles θ and η are used in the calculations as
described in the text.

directions are zero. The stability equations for smooth motion are therefore

Fz = 0, τT = 0, τv = 0 (1)

Stable motion will allow net forces in the plane of the surface and a net torque in the vertical direction.
The equations of motion for the tripod are therefore

FT = MaT, Fv = Mav, τz = Iαz (2)

whereFT is the force in the direction transverse to the direction of motion,Fv is the force in the direction
of motion, and τz is the torque in the z direction. The variables aT and av are the accelerations in the
êT and êv directions, respectively, and αz is the angular acceleration in the z direction. Since the mass
is uniformly distributed throughout the cylinder, the moment of inertia I is given by I = 1

2MR
2.

The three stability equations allow us to completely solve for the motion of the tripod. By requiring
that the contributions to Fz from the three legs add to Mg, and that the contributions to τT and τv from
the three legs add to zero, we can solve for the normal forces on the three legs (three equations in three
unknowns). This is why the tripod is a unique case — if we had four legs we would have the same three
stability equations but four unknowns. We will discuss this further later in the paper. Once the normal
forces are known, we can calculate the forces FT and Fv and the torque τz. Then, using the equations
of motion (2), one can completely describe the motion of the tripod. To illustrate how one finds the
normal forces N1, N2, and N3 on legs one, two, and three of the tripod, respectively, we consider the
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case where v > rω and the tripod legs are located in quadrants I, II, and III. Referring to Fig. 2, we find
the following forces and torques on the tripod leg in quadrant I:

τ
(1)
T = +rN1 sin θ1 − µhN1 cos

[
η+(θ1)

]
(3)

τ (1)v = −rN1 cos θ1 − µhN1 sin
[
η+(θ1)

]
(4)

τ (1)z = −rµN1 cos
[
θ1 − η+(θ1)

]
(5)

F
(1)
T = +µN1 sin

[
η+(θ1)

]
(6)

F (1)v = −µN1 cos
[
η+(θ1)

]
(7)

F (1)z = N1 (8)

where

η±(θ) = tan−1
(

rω sin θ

v ± rω cos θ

)
(9)

and 0 ≤ θ1 < π/3 to guarantee that quadrant IV has no contact point. In a similar fashion we find the
forces and torques on the tripod leg in quadrant II:

τ
(2)
T = +rN2 sin θ2 − µhN2 cos

[
η−(θ2)

]
(10)

τ (2)v = +rN2 cos θ2 − µhN2 sin
[
η−(θ2)

]
(11)

τ (2)z = +rµN2 cos
[
θ2 + η−(θ2)

]
(12)

F
(2)
T = +µN2 sin

[
η−(θ2)

]
(13)

F (2)v = −µN2 cos
[
η−(θ2)

]
(14)

F (2)z = N2 (15)

where θ2 is the angle measured from the negative êT axis to the second tripod leg. We require π/6 <
θ2 ≤ π/3 to ensure that quadrant IV has no contact point. The forces and torques on the tripod leg in
quadrant III are given by

τ
(3)
T = −rN3 sin θ3 − µhN3 cos

[
η−(θ3)

]
(16)

τ (3)v = +rN3 cos θ3 + µhN3 sin
[
η−(θ3)

]
(17)

τ (3)z = +rµN3 cos
[
θ3 + η−(θ3)

]
(18)

F
(3)
T = −µN3 sin

[
η−(θ3)

]
(19)

F (3)v = −µN3 cos
[
η−(θ3)

]
(20)

F (3)z = N3 (21)

where θ3 is the angle measured from the negative êT axis to the third tripod leg. We require π/3 ≤ θ3 <

π/2 to ensure that quadrant IV has no contact point. We note that the equations above can all be written
in terms of a single angle because the tripod legs are evenly spaced. For example, to write the equations
in terms of θ1 only, we use the relations θ2 = π/3 − θ1 and θ3 = π/3 + θ1, which can be found readily
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from the definitions of θ2 and θ3. The stability equations (1) can be applied to the case described above
to yield

N1 +N2 +N3 −Mg = 0 (22)

a1N1 + a2N2 + a3N3 = 0 (23)

b1N1 + b2N2 + b3N3 = 0 (24)

where g = 9.81 m/s2 is the acceleration due to gravity and

a1 = +r sin(θ1)− µh cos
[
η+(θ1)

]
(25)

a2 = +r sin(θ2)− µh cos
[
η−(θ2)

]
(26)

a3 = −r sin(θ3)− µh cos
[
η−(θ3)

]
(27)

b1 = −r cos(θ1)− µh sin
[
η+(θ1)

]
(28)

b2 = +r cos(θ2)− µh sin
[
η−(θ2)

]
(29)

b3 = +r cos(θ3)+ µh sin
[
η−(θ3)

]
(30)

where θ2 = π/3 − θ1 and θ3 = π/3 + θ1 in (25)–(30). Solving for the normal forces is straightforward.
We find that

N1 = a3b2 − a2b3

(a2 − a3)b1 + (a3 − a1)b2 + (a1 − a2)b3
Mg (31)

N2 = a1b3 − a3b1

(a2 − a3)b1 + (a3 − a1)b2 + (a1 − a2)b3
Mg (32)

N3 = a2b1 − a1b2

(a2 − a3)b1 + (a3 − a1)b2 + (a1 − a2)b3
Mg (33)

Note that these expressions for the normal forces on the three legs are valid when quadrant IV has no
contact point. To completely describe the normal forces for all values of θ , we need to also look at the
cases where quadrants III, II, and I have no contact points. These correspond to regions of θ1 given by
π/6 ≤ θ1 < π/3 (quadrant III has no contact point), π/3 ≤ θ1 < π/2 (quadrant II has no contact
point), and π/2 ≤ θ1 < 2π/3 (quadrant I has no contact point). A similar calculation to that presented
above is done in each case and the normal forces are found on each of the three legs. Piecing together
the normal force on the first leg in the range 0 ≤ θ1 < 2π/3 and the normal force on the second leg in
the range 2π/3 ≤ θ2 < 4π/3 and the normal force on the third leg in the range 4π/3 ≤ θ3 < 2π , we
obtain the normal force for all θ from 0 to 2π .

However, some simplification is possible. We find that taking the normal force found for the first
region (0 ≤ θ1 < π/6) over all angles from 0 to 2π reproduces the piecewise normal force described
above. This result was expected because the forces and torques calculated in quadrant I of Fig. 2 should
change sign accordingly when extended into the other quadrants. This confirms our calculations to this
stage. We next write the following expressions for the normal forces that are valid for any tripod leg in
the range from 0 ≤ θ1 < 2π where θ1 is measured counter-clockwise from the positive êT axis:

Nv>rω = a3b2 − a2b3

(a2 − a3)b1 + (a3 − a1)b2 + (a1 − a2)b3
Mg (34)

and

Nv<rω = c3d2 − c2d3

(c2 − c3)d1 + (c3 − c1)d2 + (c1 − c2)d3
Mg (35)
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Fig. 3. For rω close to v, the normal force exhibits an interesting structure. The continuous curve is for
s ≡ rω/v = 1.01; the broken curve is for s = 0.99. The parameter α ≡ µh/r = 0.1 in both curves. Note
that the normal force at the front of the tripod (0 ≤ θ ≤ π ) is greater than that at the back of the tripod
(π ≤ θ ≤ 2π ). The structure near θ = π/3, θ = π , and θ = 5π/3 is discussed in the text.

where

c1 = +r sin(θ1)− µh cos
[
θ1 − ν+(θ1)

]
(36)

c2 = +r sin(θ2)+ µh cos
[
θ2 + ν−(θ2)

]
(37)

c3 = −r sin(θ3)+ µh cos
[
θ3 + ν−(θ3)

]
(38)

d1 = −r cos(θ1)− µh sin
[
θ1 − ν+(θ1)

]
(39)

d2 = +r cos(θ2)− µh sin
[
θ2 + ν−(θ2)

]
(40)

d3 = +r cos(θ3)+ µh sin
[
θ3 + ν−(θ3)

]
(41)

and

ν±(θ) = tan−1
(

v sin θ

rω ± v cos θ

)
(42)

where, for convenience, θ1 designates the location of any leg (in the range 0 ≤ θ1 < 2π ), θ2 = π/3−θ1
and θ3 = π/3 + θ1.

Plots of the normal force versus θ show that, as expected, the normal force is greater at the “front”
of the tripod than it is at the “back”. The normal forceN(θ) has interesting structure when rω/v is close
to one as shown in Fig. 3.

The structure of the normal force near θ = π/3, π, 5π/3 when rω ≈ v can be understood by
examining the force of friction F

(2)
f on leg 2 near θ = π and the torque τ

(2)
f due to F

(2)
f . Consider

first the case where the angle θ2 for leg 2 is slightly less than π , as measured from the positive êT axis.
The direction of motion of the contact point relative to the surface is given by u(2) = v + v

(2)
rot with

|v(2)rot | = rω. For θ2 slightly smaller than π , the direction of u(2) will be very close to the negative êT
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direction, giving a torque in the êv − êT plane of magnitude rµN2 in the negative êv direction. For θ2
slightly greater than π , u(2) is close to being in the positive êT direction, and the torque of magnitude
rµN2 is in the positive êv direction. Thus, the torque goes from −rµN2êv to +rµN2êv when θ2 goes
from just slightly less than π to slightly more than π . This large change through a small angle of rotation
is the reason for the structure in Fig. 3.

A straightforward calculation gives the following expressions for the normal forces in the special
case v = rω when the second tripod leg is at an angle π±:

N

(
π

3

±)
= 1 + α ± α ± α2

3 ± 2α + α2 Mg (43)

N
(
π±) = 1 + α2

3 ± 2α + α2Mg (44)

N

(
5π

3

±)
= 1 − α ± α ∓ α2

3 ± 2α + α2 Mg (45)

where the symbol ± refers to the limits from the right and the left, respectively. In Fig. 3, α = µh/r =
0.1, giving the following values for N(θ)/Mg:

θ π/3− π/3+ π− π+ 5π/3− 5π/3+

N/Mg 0.352 0.377 0.359 0.315 0.288 0.308

We also find that the normal force on the legs of the tripod has simple asymptotic forms when the
rotation is very rapid and also when the rotation is very slow:

N(θ) → 1

3
(1 + a sin θ + b cos θ)Mg, v � rω (46)

N(θ) → 1

3

(
1 + 2µh

r
sin θ

)
Mg, v � rω (47)

where

a =
(
µh
r

) (
v
rω

)

1 +
(
µh
r

)2 b = −
(
µh
r

)2 (
v
rω

)

1 +
(
µh
r

)2 (48)

We can write the equations for the net force on the tripod in the instantaneous inertial frame. We
recall that the force in the direction of the instantaneous velocity is Fv , the force transverse to the
instantaneous velocity is FT, and the torque in the z direction is τz. There are again eight cases that
depend on which quadrant has no contact point and if rω < v or rω > v. We do not list all of these
cases explicitly but note that in each case we find FT, Fv , and τz and each of these depends on three
quantities that arise from the contribution of each leg of the tripod. For the case of v > rω and quadrant
IV having no contact point, we find

FT = +µN(θa) sin
[
η+(θ1)

] + µN(θb) sin
[
η−(θ2)

] − µN(θc) sin
[
η−(θ3)

]
(49)

Fv = −µN(θa) cos
[
η+(θ1)

] − µN(θb) cos
[
η−(θ2)

] − µN(θc) cos
[
η−(θ3)

]
(50)

τz = −rµN(θa) cos
[
θ1 − η+(θ1)

] + rµN(θb) cos
[
θ2 + η−(θ2)

] + rµN(θc) cos
[
θ3 + η−(θ3)

]
(51)
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where θa , θb, and θc are the angles to the first, second, and third legs of the tripod, respectively, measured
counter-clockwise from the positive êT axis and θ1 = θa , θ2 = π/3 − θ1, and θ3 = π/3 + θ1.

Now that the exact expressions for the normal forces, net force, and torque are known, we can derive
the equations of motion of the tripod. To proceed, we choose a sequence of inertial frames such that, at
any time t , êv is in the instantaneous direction of motion, êT is transverse to êv , and ψ(t) is the angle
between the initial direction of motion and the instantaneous velocity. The angle ψ(t) can be written
explicitly as

ψ(t) = tan−1
[
vx(t)

vy(t)

]
(52)

To translate from the instantaneous inertial frame back to the fixed inertial frame we use

Fx(t) = +FT cos [ψ(t)] + Fv sin [ψ(t)] (53)

Fy(t) = −FT sin [ψ(t)] + Fv cos [ψ(t)] (54)

These equations are easily derived [4]. Using the equations of motion (2), we can integrate to find the
velocity and angular velocity as a function of time:

vx(t) = 1

M

∫ t

0
Fx(t

′) dt ′ (55)

vy(t) = v0 + 1

M

∫ t

0
Fy(t

′) dt ′ (56)

w(t) = w0 + 1

I

∫ t

0
τz(t

′) dt ′ (57)

Integrating again we obtain the position of the tripod as a function of time:

x(t) =
∫ t

0
vx(t

′) dt ′ (58)

y(t) =
∫ t

0
vy(t

′) dt ′ (59)

We have succeeded in obtaining the exact formulae that describe the motion of a rotating tripod sliding
over a smooth surface with no approximations.

3. Results

To proceed with a tripod run, we fix the parameters r , R, h, and µ. We set the initial values of x0,
y0, v0, ω0, and θ0 = θ1 at t = t0 and then use a numerical program that uses (55)–(59) to calculate
the following quantities: x(t), y(t), ω(t), Fv(t), FT(t), τz(t),N1(t),N2(t),N3(t), Ttrans(t), and Trot(t),
where Ttrans(t) and Trot(t) are the kinetic energies of translation and rotation, respectively.

We consider first the case of rapid rotation and slow sliding, i.e., rω � v. The tripod’s CM follows
“looping” trajectories as shown in Fig. 4. In the limit of extremely rapid rotation and a somewhat large
value ofµh/r , we obtain nearly circular trajectories for the tripod.We compare the rapidly rotating tripod
results to the results reported previously [4] for a rapidly rotating circular cylinder having a continuous
circular contact ring. We will refer to a circular cylinder having a continuous circular contact ring as a
CCR hereafter. We look specifically at a special case described in ref. 4 that produces a purely analytical
result for the trajectory of a rapidly rotating CCR. Comparisons of the trajectories for a rapidly rotating
tripod and a CCR are shown in Fig. 4 for increasing values of s = rω0/v0. The first set of plots is for
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Fig. 4. Comparison of the trajectories of a rapidly rotating tripod (broken curve) and a rapidly rotating
cylinder with a circular contact ring (continuous curve). The trajectories are for s = rω0/v0 = 5, 10, 15, 20
with v0 = 2.5 m/s, θ0 = 0, r = 0.0625 m, h = 0.625 m, and µ = 0.5. The values of R change slightly with
the value of s. See text for details.

s = 5 and we require the ratio R/r = 8.32 to use the analytical result for the CCR from ref. 4. The
second plot is for s = 10 and we require the ratio R/r = 9.6. Similarly the plots for s = 15 and s = 20
require the ratios R/r = 9.92 and R/r = 10.08, respectively.

We expect a rapidly rotating tripod to give results similar to a rapidly rotating CCR because the rapidly
rotating tripod samples all the angles in a circle of radius r during a very small time, thus simulating a
rapidly rotating CCR. The trajectories are in very good agreement. We note that the deviation between
the trajectories occurs near the end of the motion. A possible explanation for this is that, near the end
of the run, the tripod has slowed down considerably due to friction and will no longer sample all angles
over a short time and thus will no longer exhibit the behaviour of the sliding, rotating CCR.

The agreement in Fig. 4 for the trajectories of a tripod as compared to a CCR indicates that the
normal force for the latter can be taken to be the same, or almost the same, as the normal force for
the tripod. It is important to recognize that the normal force NCCR(θ) for such a cylinder cannot be
calculated for a continuum of contact points at all points θ in the range 0 to 2π . Instead, one assumes
that NCCR(θ) = Ntripod(θ). Such an assumption seems reasonable.2 Further discussion is given in the
next section of this paper.

We next look at the behaviour of the tripod in the slowly rotating regime (rω � v). We again
compare the tripod and CCR trajectories. Here, we do not necessarily expect the trajectories to match
because the tripod does not sample all angles in a short time and might not exhibit the behaviour of a
CCR. Comparison of the trajectories in the slowly rotating regime are given in Fig. 5; the trajectory for
the CCR is given by analytical expressions derived in ref. 5.

That the two trajectories in Fig. 5 are so close is significant. Given that the rotation is slow, and,
therefore, that the tripod does not sample all angles, it is not unquestionably expected that the trajectories

2 For NCCR(θ) = Ntripod(θ), given that τv = 0 and τT = 0 for the tripod, it automatically follows that τv = 0 and
τT = 0 for the CCR.
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Fig. 5. Comparison of the trajectories of a tripod (broken curve) and of a cylinder (continuous curve) with
s = rω0/v0 = 0.1, v0 = 5.0 m/s, θ0 = 0, r = 0.0625 m, R = 0.14 m, h = 0.0625 m, and µ = 0.25.
Note that the two trajectories are very close. The values of xfinal and yfinal are almost the same for the two
trajectories. See text for full discussion.

agree. That they do agree supports the use of the normal force Ntripod(θ) for the CCR. Moreover, the
trajectories of the tripod and the CCR are in good agreement even when rω and v are almost equal.
The implications of this agreement go beyond this, and we will discuss this more fully in the next two
sections of this paper.

We also point out that a cylinder with a flat, circular contact area, with radius r and area πr2, will
not follow the same trajectory as the tripod with radius r or the CCR with radius r , given the same initial
conditions.

We find additional novel physical features. The first example is serpentine paths for the CM of the
tripod. A serpentine trajectory is shown in Fig. 6.

In this plot, we see that the motion of the tripod has oscillations in the lateral direction of motion.
Even more peculiar is the complete reversal in the lateral direction toward the end of the run. Trajectories
of a similar serpentine form are seen for a number of tripod runs where the ratio h/r is small. In Fig. 6
this ratio is 0.07.

The serpentine trajectory can be understood using the following picture. Consider having two of the
contact points in the back (quadrants III and IV) and the other contact point in the front (quadrant I or
II). For a counter-clockwise, rotating, sliding tripod the force of friction on the front contact point has
its êT component in the positive êT direction whereas the forces of friction on the back contact points
have their êT components in the negative êT direction. The component of the net force of friction in
the êT direction is negative, causing the tripod to curve to the left. Indeed for both swings to the left in
Fig. 6 there are two contact points in the back and one contact point in the front. During both swings
the contact point in quadrant III goes from slightly more than 180◦ to approximately 240◦ and the point
in quadrant IV goes from about −60◦ to 0◦. Also, the contact point in the front goes from about 60◦ to
120◦.

For the initial conditions of Fig. 6, the trajectory of a CCR was found to be a smooth curve, as
expected. This shows that the serpentine nature of the trajectory of a tripod is directly due to the tripod
having only three contact points.
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Fig. 6. Serpentine trajectory of a tripod. The parameters are s = rω0/v0 = 0.45, v0 = 1.0 m/s, θ0 = 0,
r = 0.0625 m, R = 0.069 m, h = 0.0044 m, and µ = 0.1. The explanation is given in the text.

For a suitable choice of parameters we find that the translational kinetic energy of the tripod oscillates.
Plots of the translational, rotational, and total kinetic energies versus time are shown in Fig. 7.

Oscillations in the translational kinetic energy are found in tripod runs where the ratio µh/r is large
and the kinetic energy is low. In Fig. 7, the ratio µh/r is 5.0.

This effect can be understood with the following picture. Consider having two of the contact points
on the “left” (quadrants II and III) and the other contact point on the “right” (quadrant I or IV). Note
from Fig. 7 that rω0 = 3v0, i.e., the rotational speed is significantly larger than the sliding speed. For
a counter-clockwise rotating, sliding tripod the force of friction on the right contact point has its êv
component in the negative êv direction whereas the forces of friction on the left contact points have
their êv components in the positive êv direction. The component of the net force of friction in the êv
direction is positive, giving the tripod a “push”, increasing its translational kinetic energy. However,
over any full cycle of rotation the translational kinetic energy decreases as shown in Fig. 7a. Note that
this requires rω to be significantly larger than v, as a simple sketch will illustrate.

We emphasize that the oscillations in Fig. 7a are not due to numerical round-off errors. Indeed,
Trot(t) is monotonic nonincreasing in time in all cases studied, and Ttotal(t) ≡ Ttrans(t) + Trot(t) is
monotonic decreasing in time even through a single full rotation and even on a time scale smaller than
that of Fig. 7.

We see that the translational kinetic energy, Ttrans(t), can oscillate in time, which would seem to
imply that the rotational kinetic energy, Trot(t), must also oscillate in time. Consider the magnitudes of
the translational and rotational kinetic energies shown in Fig. 7: as t increases from 0.4 s to 0.5 s, the
oscillations in Ttrans(t) are of order 0.01 J, whereas the drop in Trot(t) during this time is slightly more
than 6 J. The drop in Trot(t) is so rapid that, despite the small oscillations in Ttrans(t), the total kinetic
energy is monotonically decreasing in time, even though Trot(t) itself does not have oscillations. This is
readily understood by considering the following function y(x): y(x) = −x+ ε sin(x)with 0 < ε � 1;
we have that the slope is dy/dx = −1 + ε cos(x), which is always negative provided 0 < ε < 1.
Thus, Ttotal(t) and Trot(t) can both be monotonically decreasing in time while Ttrans(t) exhibits small
oscillations, all of which are manifest in Fig. 7.

The tripod can be found to tip at a very late stage of its motion. For several runs, we found that
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Fig. 7. The kinetic energies of the tripod as a function of time. The parameters are s = rω0/v0 = 3.0,
v0 = 6.25 m/s, θ0 = 0, r = 0.0625 m, R = 0.056 m, h = 0.39 m, and µ = 0.8. Full details are given in the
text. (a) The translational kinetic energy versus time. (b) The rotational kinetic energy versus time. (c) The
total kinetic energy versus time.

the tripod would exhibit stable motion for a large time and then, near the end of the run, the normal
force on one of the three legs would become negative. A negative normal force implies that the surface
has to pull on the tripod leg to maintain smooth motion. Since this does not happen, the tripod tips at
this point. An example of such a run was found with the following parameters: s = rω0/v0 = 30.0,
v0 = 6.25 m/s, r = 0.0625 m, R = 0.19 m, h = 0.39 m, and µ = 0.8. In this particular run, the tripod
tips at a time t ≈ 175 s, at which point the total kinetic energy is only 0.08% of its initial value.

4. Normal force for a circular cylinder with a continuous contact ring

In a previous investigation [4], the motion of an extremely rapidly rotating cylinder sliding slowly
(i.e., rω � v) on a smooth surface was studied. The normal force for the continuous contact ring was
assumed to be the same as the normal force Ntripod(θ) of the tripod, namely,

dN(θ) = (1 + a sin θ + b cos θ)Mg
dθ

2π
(60)

The reasoning behind this assumption was that, in rotating rapidly, the continuous contact ring could
be regarded as a huge number of triples of contact points, each triple having contact points 120◦ apart;
thus the normal force on the continuous contact ring could be regarded as being given by the normal
force for an extremely rapidly rotating tripod. Similarly, the normal force for a slowly rotating cylinder
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(rω � v) was taken to have the form of the tripod’s normal force, namely: [5]

dN(θ) =
(

1 + 2µh

r
sin θ

)
Mg

dθ

2π
(61)

The work in this paper supports that assumption.
In light of these extremes, rω � v and rω � v, consider the normal force shown in Fig. 3, where

rω ≈ v. The strange features at θ = ±π/3 and θ = π , while readily understood for the tripod, would
not seem to be applicable to the case of a CCR. The implicit assumption here is that all of the points in
the contact ring play an important role in the motion of the CCR. In the next section, we will consider
more carefully this implicit assumption, with the objective of shedding light on the question: what is
the normal force NCCR(θ) when rω ≈ v?

5. Normal forces and trajectories of N-pods and cylinders with
continuous contact rings

One question that emerges from the study of the tripod is: what are the normal forces and trajectories
of cylinders having N contact points, where N ≥ 4? For N ≥ 4, we have more than three unknowns
and only three equations of constraint. Are there additional equations that will hold in general, or is it
the case that theN normal forces can vary in an unpredictable manner? Further, how does one calculate
the normal force for a cylinder with a continuous contact ring, or other continuous contact patterns? In
general, when we are presented with a situation where there are more unknowns than equations dictated
by the constraint equations, we have a statically indeterminate system [17]. The purpose of this section
is to highlight some implications of such a system by way of two simple experiments.

First, we take the simplest example of a statically indeterminate system: a linear rod supported by
three supports. In this case, it is only required that two supports exist for the rod to be held up.

The experiment consists of three precision weigh-scales, a linear rod, three supports and a heavy
steel mass to vary the position of the center of mass of the system.

The supports are placed such that two hold the linear rod at the ends and the third support is placed
roughly at the center. The heavy mass is placed at a position roughly between two of the three supports.
The measurement of the normal force measured by each scale is recorded. The heavy mass is then
removed, the scales are zeroed, and the mass is replaced. By taking the sum of the measurements and
comparing to the mass itself, the measurements are believed to be highly accurate. The mass is removed
and again replaced by hand as accurately as possible to the original position and another measurement
of the normal forces is taken. Repeating this procedure 20 times gave measurements for the normal
force at each support. The error of the measurements was observed to vary by anywhere from 20 to
80% of the value itself.

Of importance to note here is that the variability is very large. This result suggests that having more
supports than necessary to support the rod leads to normal forces that are highly variable and potentially
difficult, if not impossible, to predict.

In the second experiment, we examine the next level of complexity from the first experiment. We
now consider the case of a plane, held by multiple supports. In this case, if we have a plane that is
supported at more than three points, it is a statically indeterminate system. The question we would like
to raise at this point is: What is the effect on the normal force distribution under the supports for such a
configuration? Are they highly variable for this case, as they are for the linear rod experiment outlined
above?

The simple experiment for this case is to take two optically flat pieces of glass (0.635 cm thick, and
approximately 15 cm × 10 cm) and place approximately 15 chrome steel balls between them.3 The
steel balls are used to provide a point contact support.

3 Precision chrome steel balls were obtained from Kaman Industrial Technologies.
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One of the pieces of glass is laid flat on a table, and leveled. The chrome steel balls are dispersed
randomly on the glass surface. The second piece of glass is carefully placed on top of the steel balls.
Without pushing down on the glass significantly, the top glass plate is pushed in one direction in the
plane of the table, and which balls carry the weight of the glass is observed by noting which ones roll
with the plate. The result is very counter-intuitive: Only three spheres roll with the glass! That is, of the
many balls between the plates, only three will be supporting the weight of the plate at any given time.4

Variation in ball diameter as the cause is discounted by observing that taking the three that roll with the
plate at any given time, and moving them to a different location on the plate, it will be a different set
of three that roll. Warping of the glass is discounted by flipping the top glass-plate over and repeating.
The same was done with the bottom plate. All results indicate that three balls are all that is required,
and all that will support the weight of the glass plate, except in situations where sometimes four will
support the plate. The fact that four sometimes support the plate is explained by noting that when the
center of mass is on, or close to the edge of the triangle formed by the three supports, it is unstable, and
may require the fourth for stability over short rolling displacements.

These results are presented to illustrate the complexities in dealing with an N -pod system when
N ≥ 4, and further, for why the tripod is an important structure to investigate.

What are the implications of this experiment? Could it be that the continuous contact ring of a rotating
circular cylinder sliding over a smooth surface has only three, or only a small number of points that
are actually in contact with the surface at any given time? If so, this would explain why the trajectories
of the tripod and the cylinder with a continuous contact ring are almost the same, whether rω � v or
rω � v or even when the ratio rw/v is of order unity. Moreover, if the motion of the CCR is due to only
three or a few contact points when rω ≈ v then the normal force shown in Fig. 3 would be applicable
for the motion of the CCR, contrary to what one may well have expected.

We point out that cylinders with CCRs do have the same trajectory given the same initial conditions
(i.e., the same ω0 and v0). If this were not so, the sport of curling [4–9, 13–15], for example, would not
be very popular! Again the following question arises: Will an N -pod (e.g., N = 5) have, at any given
time, only three legs making contact with the surface, or will all N make contact, with variable normal
forces? This and related questions can be addressed experimentally.5

6. Summary and outlook

In this paper, we investigated the motion of a sliding, rotating tripod, which is unique and important
because it is the only sliding, rotating object for which all aspects of the motion can be calculated exactly.
We calculated the exact normal forces on the three legs of the tripod and derived the equations of motion
for the tripod. The possible trajectories we reported had novel features. For example, a rapidly rotating
tripod (rω � v) can execute trajectories with large lateral deflections. We also showed that the tripod
can follow serpentine paths; that is, the tripod can start with lateral deflection to the right, for example,
and then swing back to the left during its motion. Serpentine paths with even more lateral oscillations are
possible. We also found that the translational kinetic energy of the tripod can increase during part of the
motion while still being monotonically decreasing over full cycles of rotation. When the translational
speed and the speed of rotation were almost equal the normal force of the tripod displayed an interesting
structure (shown in Fig. 3). For several tripod runs we found that the tripod could exhibit smooth motion
for a time until near the end of the motion, at which point the normal force would become negative and
the tripod would tip.

We compared the tripod trajectories to trajectories of rotating, sliding cylinders having continuous
contact rings. We found that these trajectories can be almost the same for the extremes of slow rotation

4 In some cases four steel balls move, but only for a very short lateral displacement after which only three steel
balls move with the glass plate.

5This work is beyond the scope of this paper.
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and rapid rotation, which supports results reported in previous works [4–9]. We also found that the
trajectories can be quite close when the rotational and translational speeds are comparable. We also
discussed significant implications of our results, including normal forces and motions of cylinders with
more than three contact points (N -pods). We also compared the exact normal force for the tripod with
the normal force for a continuous contact ring. We reported some very interesting observations of the
motion of a flat, smooth sheet of material sliding over a number of identical spheres, and raised questions
about the motions of N -pods that emerged from these observations.
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